Abstract

Ni-rich layered LiNi0.8 Mn0.1 Co0.1 O2 (NCM811) cathode material has promising prospects for high capacity batteries at acceptable cost. However, LiNi0.8 Mn0.1 Co0.1 O2 cathode material suffers from surface structure instability and capacity degradation upon cycling. In this study, in situ ZrP2 O7 coating is introduced to provide a protective structure. The optimum modification amount is 1.0 wt %. A series of characterization methods (X-ray diffraction, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy) verify the generation and structure of the coating layer. Electrochemical performance tests demonstrate that the cycle retention rate increases from 66.35 to 86.92 % after 100 cycles at 1 C rate. The dense inorganic pyrophosphate layer not only has chemical stability against the electrolyte but also eliminates surface residual lithium. The protective layer and the matrix are strongly joined by high-temperature heating, thereby giving a certain mechanical strength and protecting the overall structure of the topography. Therefore, the cycle and rate performance are enhanced by the modification with ZrP2 O7 .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.