Abstract
Low‐temperature solution‐processed TiO2 nanocrystals (LT‐TiO2) have been extensively applied as electron transport layer (ETL) of perovskite solar cells (PSCs). However, the low electron mobility, high density of electronic trap states, and considerable photocatalytic activity of TiO2 result in undesirable charge recombination at the ETL/perovskite interface and notorious instability of PSCs under ultraviolet (UV) light. Herein, LT‐TiO2 nanocrystals are in situ fluorinated via a simple nonhydrolytic method, affording formation of Ti─F bonds, and consequently increase electron mobility, decrease density of electronic trap states, and inhibit photocatalytic activity. Upon applying fluorinated TiO2 nanocrystals (F‐TiO2) as ETL, regular‐structure planar heterojunction PSC (PHJ‐PSC) achieves a champion power conversion efficiency (PCE) of 22.68%, which is among the highest PCEs for PHJ‐PSCs based on LT‐TiO2 ETLs. Flexible PHJ‐PSC devices based on F‐TiO2 ETL exhibit the best PCE of 18.26%, which is the highest value for TiO2‐based flexible devices. The bonded F atoms on the surface of TiO2 promote the formation of Pb─F bonds and hydrogen bonds between F− and FA/MA organic cations, reinforcing interface binding of perovskite layer with TiO2 ETL. This contributes to effective passivation of the surface trap states of perovskite film, resulting in enhancements of device efficiency and stability especially under UV light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.