Abstract

SUMMARY This study aimed to evaluate the surface characteristics of restorative materials (roughness, hardness, chemical changes by energy-dispersive spectroscopy [EDX], and scanning electron microscopy [SEM]) submitted to in situ biodegradation. Fifteen discs of each material (IPS e.max [EM], Filtek Supreme [FS], Vitremer [VI], Ketac Molar Easymix [KM], and Amalgam GS-80 [AM]) were fabricated in a metallic mold (4.0 mm × 1.5 mm). Roughness, hardness, SEM, and EDX were then evaluated. Fifteen healthy volunteers used a palatal device containing one disc of each restorative material for seven days. After the biodegradation, the roughness, hardness, SEM, and EDX were once again evaluated. Data obtained from the roughness and hardness evaluations were submitted to Kolmogorov-Smirnov and Tukey-Kramer tests (p<0.05). All esthetic restorative materials showed a significant increase in the roughness after biodegradation. Before biodegradation, significant differences in the hardness among the materials were seen: EM>AM>FS>KM>VI. After biodegradation, the hardness was significantly altered among the materials studied: EM>AM>FS=KM>VI, along with a significant increase in the hardness for AM, KM, and VI. SEM images indicated degradation on the surface of all materials, showing porosities, cracks, and roughness. Furthermore, after biodegradation, FS showed the presence of Cl, K, and Ca on the surface, while F was not present on the VI and KM surfaces. EM and AM did not have alterations in their chemical composition after biodegradation. It was concluded that the dental biofilm accumulation in situ on different restorative materials is a material-dependent parameter. Overall, all materials changed after biodegradation: esthetic restorative materials showed increased roughness, confirmed by SEM, and the ionomer materials and silver amalgam showed a significantly higher hardness. Finally, the initial chemical composition of the composite resin and ionomer materials evaluated was significantly altered by the action of the biofilm in situ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call