Abstract

Synchrotron radiation real-time imaging technology was used for in situ study of dissolution and growth behavior of interfacial Cu6Sn5 intermetallic compound (IMC) in Sn/Cu solder interconnect during reflow soldering. The pre-formed Cu6Sn5 grains dissolved into the liquid solder with decreasing aspect ratio in the heating stage, maintained a thin layer of scallop-type in the dwelling stage, and re-precipitated on the existing Cu6Sn5 grains at a faster growth rate with increasing aspect ratio in the cooling stage. The Cu concentration gradient at the interface is responsible for the aspect ratio variation (corresponding to dissolution and re-precipitation of interfacial Cu6Sn5 grains), which is also supported by the simulation of atomic diffusion in the solder based on Fick׳s second law. The growth behavior was well explained by a proposed model based on the Cu concentration gradient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.