Abstract
Fourier transform infrared spectroscopy (FTIRS) can provide rich information on the composition and content of samples, enabling the detection of subtle changes in tissue composition and structure. This study represents the first application of FTIRS to investigate cartilage under microgravity. Simulated microgravity cartilage model was firstly established by tail-suspension (TS) for 7, 14 and 21 days, which would be compared to control samples. A self-developed hollow optical fiber attenuated total reflection (HOF-ATR) probe coupled with a FTIR spectrometer was used for the spectral acquisition of cartilage samples in situ, and one-way analysis of variance (ANOVA) was employed to analyze the changes in the contents of cartilage matrix at different stages. The results indicate that cartilage degenerates in microgravity, the collagen content gradually decreases with the TS time, and the structure of collagen fibers changes. The trends of proteoglycan content and collagen integrity show an initial decrease followed by an increase, ultimately significantly decreasing. The findings provide the basis for the cartilage degeneration in microgravity with TS time, which must be of real significance for space science and health detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.