Abstract

γ-TiAl-based alloys are promising lightweight high-temperature structural materials, and the transformation from the α parent phase to γ lamellae during the cooling process has a great influence on the microstructures and mechanical properties of TiAl alloys. In this paper, an in-situ observation technique, high-temperature laser scanning confocal microscopy (HTLSCM), was utilized to investigate the continuous cooling transition (CCT) from the α phase in three compositions. The nucleation and growth behaviors of γ lamellae were studied at several moderate cooling rates. In addition, the processes of helium gas quenching for three alloys were investigated, and the massive transformation was observed in Ti–49Al. CCT diagraphs were concluded for three alloys. The Vickers hardness of TiAl alloys subjected to different cooling rates was tested, and it was found that the hardness of alloys was enhanced with increasing cooling rate due to the refinement of lamellar spacing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.