Abstract

Experiments on the effect of fast heat loads on the surface of tungsten were carried out on the BETA facility at the Budker Institute. Tungsten samples were uniformly heated by an electron beam with a heat flux factor below the melting threshold. During and shortly after exposure, the 2D surface temperature distribution was measured, as well as the temperature history on selected surface areas. Active diagnostics using the scattering of CW laser light on a surface exposed by the electron beam allowed us to monitor the damage dynamics. At the heating stage, an increase in the surface roughness occurred, caused by inhomogeneous elastic and plastic deformations of the heated layer. As the cooling progressed, the residual plastic deformations remained. Simultaneously with the modification of the surface, bending of samples with a thickness of 3-4 mm occurred. The bending dynamics of the sample was measured by the intensity of a converging laser beam reflected from the back surface of the sample, polished to a mirror state. The residual sag due to bending increases with the heat load similarly as residual roughness of the front surface of the sample. These data, together with simultaneously measured temperature dynamics and the spatial heating profile, can provide an experimental basis for the numerical calculation of the residual stresses in the sample. The data obtained in situ were compared with those measured outside the vacuum chamber with X-ray diffraction, optical profiler, and optical interferometer. At the stage of cooling, after a sufficient intensity of heating, the second stage of damage took place — the cracking of the surface layer. The time before the start of this relatively fast process usually exceeded the time to achieve a DBTT by 1–4 orders of magnitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.