Abstract

Formation of InSb quantum dots grown in an InAs matrix by molecular-beam epitaxy that does not involve forced deposition of InSb is studied. Detection of intensity oscillations in the reflection of high-energy electron diffraction patterns was used to study in situ the kinetics of the formation of InSb quantum dots and an InAsSb wetting layer. The effects of the substrate temperature, the shutter operation sequence, and the introduction of growth interruptions on the properties of the array of InSb quantum dots are examined. Introduction of a growth interruption immediately after completing the exposure of the InAs surface to the antimony flux leads to a reduction in the nominal thickness of InSb and to an enhancement in the uniformity of the quantum-dot array. It is shown that, in the case of deposition of submonolayer-thickness InSb/InAs quantum dots, the segregation layer of InAsSb plays the role of the wetting layer. The Sb segregation length and segregation ratio, as well as their temperature dependences, are determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call