Abstract

The drug-target protein interaction is the basis of drug screening and precise therapy in modern clinical medicine. How to acquire the information about the drug-target protein interaction in single living cell is a great challenge due to the shortage of efficient methods. Here we propose a new strategy for in situ studying the drug-target protein interaction in single living cells based on the competition of candidate drugs to the fluorescent probe-target complexes and fluorescence correlation spectroscopy (FCS) with a microfluidic chip. In this study, we used ABL kinase (target) as a model and synthesized a fluorescent probe (Cy3-dasatinib) with an affinity to the target using ABL inhibitor dasatinib as a precursor. We systematically investigated the association of the probe with targets and the dissociation of the drug-target complexes in the presence of candidate drug. We presented a new parameter IC50 (τD) to assess the inhibitory effect of drugs on the basis of the changes in the characteristic diffusion time (τD) and the binding ratio (y) of fluorescent probes during the drug competition process in living cells. We found a remarkable difference of IC50 (τD) values in living cells and in solutions, suggesting it is quite necessary to evaluate the drug-target interactions in living cells. Compared with current methods, our approach can be used to in situ and real-time study the drug-target interaction in living cells, and it may become a promising and universal tool for in situ drug research at molecular level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call