Abstract
New information about the active sites for the water gas shift (WGS) reaction over Cu-CeO2 systems was obtained using in-situ, time-resolved X-ray diffraction (TR-XRD), X-ray absorption spectroscopy (TR-XAS, Cu K and Ce L3 edges), and infrared spectroscopy (DRIFTS). Cu-CeO2 nanoparticles prepared by a novel reversed microemulsion method (doped Ce1-xCuxO2 sample) and an impregnation method (impregnated CuOx/CeO2 sample) were studied. The results from all of the samples indicate that both metallic copper and oxygen vacancies in ceria were involved in the generation of active sites for the WGS reaction. Evidence was found for a synergistic Cu-Ovacancy interaction. This interaction enhances the chemical activity of Cu, and the presence of Cu facilitates the formation of O vacancies in ceria under reaction conditions. Water dissociation occurred on the Ovacancy sites or the Cu-Ovacancy interface. No significant amounts of formate were formed on the catalysts during the WGS reaction. The presence of strongly bound carbonates is an important factor for the deactivation of the catalysts at high temperatures. This work identifies for the first time the active sites for the WGS reaction on Cu-CeO2 catalysts and illustrates the importance of in situ structural studies for heterogeneous catalytic reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.