Abstract
Mammalian reovirus (reovirus) is a multilayered, turreted member of Reoviridae characterized by transcription of dsRNA genome within the innermost capsid shell. Here, we present high-resolution in situ structures of reovirus transcriptase complex in an intact double-layered virion, and in the uncoated single-layered core particles in the unloaded, reloaded, pre-elongation, and elongation states, respectively, obtained by cryo-electron microscopy and sub-particle reconstructions. At the template entry of RNA-dependent RNA polymerase (RdRp), the RNA-loading region gets flexible after uncoating resulting in the unloading of terminal genomic RNA and inactivity of transcription. However, upon adding transcriptional substrates, the RNA-loading region is recovered leading the RNAs loaded again. The priming loop in RdRp was found to play a critical role in regulating transcription, which hinders the elongation of transcript in virion and triggers the rearrangement of RdRp C-terminal domain (CTD) during elongation, resulting in splitting of template-transcript hybrid and opening of transcript exit. With the integration of these structures, a transcriptional model of reovirus with five states is proposed. Our structures illuminate the RdRp activation and regulation of the multilayered turreted reovirus.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.