Abstract

AbstractSome long‐outstanding technical challenges exist that continue to be of hindrance to fully harnessing the unique investigative advantages of nuclear magnetic resonance (NMR) spectroscopy in the in situ investigation of rechargeable battery chemistry. For instance, the conducting materials and circuitry necessary for an operational battery always deteriorate the coil‐based NMR sensitivity when placed inside the coil, and the shape mismatch between them leads to low sample filling factors and even higher detection limits. We report, herein, a novel and successful adaptation of stripline NMR detection that integrates seamlessly NMR detection with the construction of an electrochemical device in general, or a battery in particular, which leads to an in situ electrochemical NMR technique with much higher detection sensitivity, higher sample filling factor, and which is particularly suitable for mass‐limited samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.