Abstract

The biaxial stress and thermal expansion of multilayer doped-aluminosilicate environmental barrier coatings were measured in situ during cooling using microfocused high-energy X-rays in transmission. Coating stresses during cooling from 1000 °C were measured for as-sprayed and thermally cycled samples. In the as-sprayed state, tensile stresses as high as 75 MPa were measured in the doped-aluminosilicate topcoat at 375 °C, after which a drop in the stress occurred accompanied by through-thickness cracking of the two outermost layers. After thermally cycling the samples, the stress in the topcoat was reduced to approximately 50 MPa, and there was no drop in stress upon cooling. This stress reduction was attributed to a crystallographic phase transformation of the topcoat and the accompanying change in thermal expansion coefficient. The addition of a doped aluminosilicate to the mullite layer did not lower the stress in the topcoat, but may offer increased durability due to an increased compressive stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.