Abstract
We provide an overview of structure and reactivity of selected bimetallic single crystal electrodes obtained by the method of spontaneous deposition. The surfaces that are described and compared are the following: Au(1 1 1)/Ru, Pt(1 1 1)/Ru and Pt(1 1 1)/Os. Detailed morphological information is presented and the significance of this work in current and further study of nanoisland covered surfaces in the catalytic and spectroscopic perspective is highlighted. All surfaces were investigated by in situ STM and by electroanalytical techniques. The results confirm our previous data that nanosized Ru islands are formed with specific and distinctive structural features, and that the Ru growth pattern is different for Au(1 1 1) and Pt(1 1 1). For Au(1 1 1), Ru is preferentially deposited on steps, while a random and relatively sparse distribution of Ru islands is observed on terraces. In contrast, for Ru deposited on Pt(1 1 1), a homogeneous deposition over all the Pt(1 1 1) surface was found. Os is also deposited homogeneously, and at a much higher rate than Ru, and even within a single deposition it forms a large proportion of multilayer islands. On Au(1 1 1), the Ru islands on both steps and terraces reach the saturation coverage within a short deposition time, and the Ru islands grow to multilayer heights and assume hexagonal shapes. On Pt(1 1 1), the Ru saturation coverage is reached relatively fast, but when a single deposition is applied, Ru nanoislands of mainly monoatomic height are formed, with the Ru coverage not exceeding 0.2 ML. For Ru deposits on Pt(1 1 1), we demonstrate that larger and multilayer islands obtained in two consecutive depositions can be reduced in size––both in height and width––by oxidizing the Ru islands and then by reducing them back to a metallic state. A clear increase in the Ru island dispersion is then obtained. However, methanol oxidation chronoamperometry shows that the surface with such a higher dispersion is less active to methanol oxidation than the initial surface. A preliminary interpretation of this effect is provided. Finally, we studied CO stripping reaction on Pt(1 1 1)/Ru, Au(1 1 1)/Ru and on Pt(1 1 1)/Os. We relate CO oxidation differences observed between Pt(1 1 1)/Ru and Pt(1 1 1)/Os to the difference in the oxophilicity of the two admetals. In turn, the difference in the CO stripping reaction on Pt(1 1 1)/Ru and Au(1 1 1)/Ru with respect to the Ru islands is linked to the effect of the substrate on the bond strength and/or adlayer structure of CO and OH ads species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.