Abstract

Groups 5−7 transition metal oxides (V2O5, Nb2O5, Ta2O5, CrO3, MoO3, WO3, Re2O7) were anchored on a SiO2 support via incipient wetness impregnation and calcination. The molecular and electronic structures of the dehydrated supported metal oxides and the SiO2 support were determined by combined in situ Raman, IR, and UV−vis spectroscopy under dehydrated conditions. In situ Raman characterization reveals that the supported metal oxides are only present as surface species below the maximum dispersion limit (where crystalline metal oxide nanoparticles are absent). In situ IR analysis shows that the surface metal oxides anchor to the SiO2 support at Si−OH and adjacent Si−O−Si sites. The corresponding in situ UV−vis diffuse reflectance spectroscopy indicates that the dehydrated surface metal oxide species are present as isolated structures. Isotopic D2O−H2O exchange demonstrates that the dehydrated surface MOx species possess the MO oxo functionality but no MOH bonds. The number of MO oxo bonds was found to be r...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.