Abstract

Surface-enhanced infrared absorption spectroscopy is used in situ to determine the electrochemical stability of organic interfaces deposited onto the surface of nanostructured, thin-film gold electrodes via the electrochemical reduction of diazonium salts. These interfaces are shown to exhibit a wide electrochemical stability window in both acetonitrile and phosphate buffer, far surpassing the stability window of thiol-derived self-assembled monolayers. Using the same in situ technique, the application of radical scavengers during the electrochemical reduction of diazonium salts is shown to moderate interface formation. Consequently, the heterogeneous charge-transfer resistance can be reduced sufficiently to enhance the direct electron transfer between an immobilized redox-active enzyme and the electrode. This was demonstrated for the oxygen-tolerant [NiFe] hydrogenase from the "Knallgas" bacterium Ralstonia eutropha by relating its electrochemical activity for hydrogen oxidation to the interface properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call