Abstract

Speciation of copper-humic substances (HS) in the electrokinetic remediation (EKR) of a contaminated soil was studied by in situ extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies. The least-square fits of the XANES spectra suggested that the main Cu species in the contaminated soil were Cu-HS (50%), CuCO(3) (28%), Cu(2)O (11%), and CuO (11%). The Cu-HS in the contaminated soil possessed equatorial and axial Cu-O bond distances of 1.94 and 2.17 A with coordination numbers (CNs) of 3.6 and 1.4, respectively. In the EKR process, the axial Cu-O bond distance in the Cu-HS complexes was increased by 0.15 A, which might be due to a ligand exchange of the Cu-HS with H(2)O molecules in the electrolyte. After 180 min of EKR, about 50% of the Cu-HS complexes (or 24% of total Cu) in the soil were dissolved and formed [Cu(H(2)O)(6)](2+) in the electrolyte, 71% (or 17% of total Cu in the soil) of which were migrated to the cathode under the electric field (5 V/cm). This work exemplifies the use of in situ EXAFS and XANES spectroscopies for speciation studies of Cu chelated with HS in the contaminated soil during EKR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call