Abstract

A feedback inhibition effect of high autoinducer levels on metabolite secretion in Chromobacterium subtsugae (C. subtsugae) was evidenced by in situ spatiotemporal surface-enhanced Raman spectroscopy (SERS) profiling. The hierarchical hydrophobic plasmonic array in agar medium is structured by oil/water/oil (OL/W/OH) triphasic interfacial self-assembly. The hydrophobic layer acts as a "door curtain" to selectively permit adsorption of a quorum sensing (QS)-regulated fat-soluble metabolite, i.e., violacein (Vio), and significantly blocks nonspecific adsorption of water-soluble proteins, etc. The SERS profiling clearly evidences that the diffusion of N-hexanoyl-l-homoserine lactone (C6-HSL) in agar medium quickly triggers the initial synthesis of Vio in C. subtsugae CV026 but surprisingly inhibits the intrinsic synthesis of Vio in C. subtsugae ATCC31532. The latter negative response might be related to the VioS repressor of ATCC31532, which negatively controls violacein production without influencing the expression of the CviI/R QS system. Moreover, two sender-receiver systems are constructed by separately coculturing CV026 or ATCC31532 with Hafnia alvei H4 that secretes large amounts of C6-HSL. Expectedly, the cocultivation similarly triggers the initial synthesis of Vio in CV026 but seems to have a quite weak negative effect on the intrinsic synthesis in ATCC31532. In fact, the negative regulation in ATCC31532 might be affected by a diffusion-dependent concentration effect. The H4 growth and its secretion of C6-HSL are a slow and continuous process, thereby avoiding the gathering of local high concentrations. Overall, our study put forward an in situ SERS strategy as an alternative to traditional bioluminescent tools for highly sensitively analyzing the spatiotemporal communication and cooperation in live microbial colonies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call