Abstract

Spatial metabolomic analysis of individual tumor spheroids can help investigate metabolic rearrangements in different cellular regions of a spheroid. In this work, a nanocapillary-based electrospray ionization mass spectroscopy (ESI-MS) method is established that could realize the spatial sampling of cellular components in different regions of a single living tumor spheroid and the subsequent MS analysis for a metabolic study. During the penetration of the nanocapillary into the spheroid for sampling, this "wound surface" at the outer layer of the spheroid takes only 0.1% of the whole area that maximally maintains the cellular activity inside the spheroid for the metabolic analysis. Using the ESI-MS analysis, different metabolic activities in the inner and outer (upper and lower) layers of a single spheroid are revealed, giving a full investigation of the metabolic heterogeneity inside one living tumor spheroid for the first time. In addition, the metabolic activities between the outer layer of the spheroid and two-dimensional (2D)-cultured cells show obvious differences, which suggests more frequent cell-cell and cell-extracellular environment interactions during the culture of the spheroid. This observation not only establishes a powerful tool for the in situ spatial analysis of the metabolic heterogeneity in single living tumor spheroids but also provides molecular information to elucidate the metabolic heterogeneity in this three-dimensional (3D)-cultured cell model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.