Abstract

Summary The use of condensing solvents, especially propane vapor, has been proposed for the low-temperature recovery of bitumen by gravity drainage. A full numerical analysis of such a process is presented. A hybrid spectral/finite-difference method was implemented to solve equations simultaneously. The results show that the hydrodynamics of a miscible front was highly dependent on the characteristics of the porous medium and also on the properties of the miscible fluid. As a significant factor, the dependency of the production flow rate on the thickness of the porous medium was measured. The order of dependency was found to be a function of time and cannot be considered as a constant. Hydrodynamic dispersion was also found to decrease this dependency. More-detailed results, along with quantitative analyses, are also discussed to indicate how the hydrodynamics was influenced by other porous-medium characteristics and fluid properties, such as dissolution rate and molecular diffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.