Abstract
A graphitic carbon nitride (g-C3 N4 ) polymer matrix was embedded with AgNi alloy nanoparticles using a simple and direct in situ solid-state heat treatment method to develop a novel AgNi/g-C3 N4 photocatalyst. The characterization confirms that the AgNi alloy particles are homogeneously distributed throughout the g-C3 N4 matrix. The catalyst shows excellent photoelectrochemical activity for water splitting with a maximum photocurrent density of 1.2 mA cm-2 , which is the highest reported for doped g-C3 N4 . Furthermore, a detailed experimental study of the photocatalytic degradation of Rhodamine B (RhB) dye using doped g-C3 N4 showed the highest reported degradation efficiency of approximately 95 % after 90 min. The electronic conductivity increased upon incorporation of AgNi alloy nanoparticles on g-C3 N4 and the material showed efficient charge carrier separation and transfer characteristics, which are responsible for the enhanced photoelectrochemical and photocatalytic performance under visible light.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.