Abstract

High-energy three-dimensional X-ray diffraction with medium and high reciprocal space resolution was applied to study in situ tensile deformation of Ti–7Al specimens. Samples with planar and random dislocation microstructures were prepared and characterized by electron microscopy. Stress tensors of individual grains were obtained at several loads up to 2% deformation. The stress tensors were found to rotate, and resolved shear stresses were calculated. High-resolution reciprocal space maps of selected grains were recorded. Azimuthal and radial distributions were visualized and discussed in terms of idealized dislocation structures. Heterogeneous grain rotations were observed for the planar microstructure and found to be consistent with activation of the highest stressed basal slip system. Intra-granular strain gradients were detected in excess of the intrinsic radial dislocation peak broadening. The potential of combining the applied techniques with modeling to obtain multiple length-scale information during deformation of bulk specimens is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.