Abstract

Microsurgery and biopsies on individual cells in a cellular microenvironment are of great importance to better understand the fundamental cellular processes at subcellular and even single-molecular levels. However, it is still a big challenge for in situ surgery without interfering with neighboring living cells. Here, we report a thermoplasmonics combined optical trapping (TOT) technique for in situ single-cell surgery and intracellular organelle manipulation, without interfering with neighboring cells. A selective single-cell perforation was demonstrated via a localized thermoplasmonic effect, which facilitated further targeted gene delivery. Such a perforation was reversible, and the damaged membrane was capable of being repaired. Remarkably, a targeted extraction and precise manipulation of intracellular organelles were realized via the optical trapping. This TOT technique represents a new way for single-cell microsurgery, gene delivery, and intracellular organelle manipulation, and it provides a new insight for a deeper understanding of cellular processes as well as to reveal underlying causes of diseases associated with organelle malfunctions at a subcellular level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.