Abstract

Extracellular vesicles (EVs) are becoming increasingly important in liquid biopsy for cancer because they contain multiple biomarkers, including proteins and RNAs, and circulate throughout the body. Cancer cell-derived EVs are highly heterogeneous, and multiplexed biomarker detection techniques are required to improve the accuracy of diagnosis. In addition, in situ EV biomarker detection increases the efficiency of the detection process because EVs are difficult to handle. In this study, in situ simultaneous detection of EV surface proteins, programmed cell death-ligand 1 (PD-L1), and internal miRNA-21 (miR-21) analyzed by conventional flow cytometry was developed for a breast cancer liquid biopsy. However, the majority of EVs were not recognized by flow cytometry for biomarker detection because the size of EVs was below the detectable size range of the flow cytometer. To solve this problem, the formation of EV clusters was induced by 1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE)-polyethylene glycol-DSPE during biomarker detection. Consequently, both PD-L1 and miR-21 detection signals from cancer cell-derived EVs were drastically increased, making them distinguishable from normal cell-derived EVs. The in situ simultaneous cancer biomarker detection from EV clusters analyzed by flow cytometry contributes to an increase in the sensitivity and accuracy of the EV-based liquid biopsy for cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.