Abstract

The extremely serious urban runoff eutrophication and black odorous phenomenon pose a significant threat to the lake aquatic ecosystem, resulting in a significantly increased frequency, magnitude, and duration of algal blooms in lakes. However, few investigations focus on small tributaries of the lakes, despite the ubiquity and potential local importance of these runoffs. Thus, the labile sediments NH4+-N, NO3−-N, PO43−, Fe2+, and S2− in black odorous runoff at Wuxi were overall analyzed at high resolution using diffusive gradients in thin films (DGT). The variations in labile N, P, Fe, and S distribution profiles at different sampling sites indicated high heterogeneity in sediments. The concentrations of labile P, Fe, and S showed synchronous variation from the sediment-water interface (SWI) up to −20 mm along sediment profiles. Moreover, there existed a significant positive correlation among labile P, Fe, and S concentrations (p < 0.05), which might represent typical odor compounds’ FeS and H2S synchronous release process in urban runoff. Furthermore, the apparent diffusion fluxes of labile P, Fe, and S across the SWI were all released upward, while fluxes of NH4+-N and NO3−-N release downward, indicating the sediments act as source and sink of P and N, respectively. Sediments’ potential for endogenous P and N fractions release results in the black−odorous water, and sediment finally abouchement the Taihu, which intensifies further lake eutrophication phenomenon.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.