Abstract

Silica formation in a rubber matrix is studied. The hypothesis that the formation proceeds via inverse micelles where the hexylamine present, being a catalyst, also behaves as a surfactant, is made highly plausible. As well-known, the conversion of TEOS into a solid silica particles proceeds via hydrolysis and condensation reactions. These transformations of TEOS comprise consequential substitution of the hydroxyl (−OH) groups with siloxane ones (−OSi), labeled as Q1: one −OSi group; Q2: two −OSi groups; Q3: three −OSi groups; and Q4: four −OSi groups. Here the kinetics of the sol–gel reaction in the rubber matrix was studied as a function of the reaction temperature (40–120 °C) by 1H high-resolution magic-angle spinning (HR-MAS) NMR spectroscopy. Real-time small-angle X-ray scattering (SAXS) measurements of the sol–gel reaction in NR and EPDM rubber matrices were performed in a time scale of 1 s to 60 min with images being acquired every 15 s. The sol–gel reaction in NR and EPDM rubber at 100 °C shows an...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.