Abstract

Groundwater plumes often contain a mixture of contaminants that cannot easily be remediated in situ using a single technology. The purpose of this research was to evaluate an in situ treatment sequence for the control of a mixed organic plume (chlorinated ethenes and petroleum hydrocarbons) within a Funnel-and-Gate. A shallow plume located in the unconfined aquifer at Alameda Point, CA, was found to contain up to 218,000 μg/l of cis-1,2 dichloroethene (cDCE), 16,000 μg/l of vinyl chloride (VC) and <1000 μg/l of 1,1 dichloroethene (1,1 DCE), trans-1,2 dichloroethene ( trans-1,2 DCE) and trichloroethene (TCE). Total benzene, toluene, ethylbenzene and xylenes (BTEX) concentrations were <10,000 μg/l. Contaminated groundwater was funneled into a gate, 3.0 m wide, 4.5 m long and 6.0 m deep (keyed into the underlying aquitard) where treatment occurred. The initial gate segment consisted of granular iron, for the reductive dechlorination of the higher chlorinated ethenes. The second segment, the biosparge zone, promoted aerobic biodegradation of petroleum hydrocarbons and any remaining lesser-chlorinated compounds, stimulated by dissolved oxygen (DO) and carbon dioxide (CO 2) additions via an in situ sparge system (CO 2 was used to neutralize the high pH produced from reactions in the iron wall). Groundwater was drawn through the gate by pumping two wells located at the sealed, downgradient, end. Over a 4-month period an estimated 1350 g of cDCE flowed into the treatment gate and the iron wall removed 1230 g, or 91% of the mass. The influent mass of VC was 572 g and the iron wall removed 535 g, corresponding to 94% mass removal. The other chlorinated ethenes had significantly lower influent masses (3 to 108 g) and the iron wall removed the majority of the mass resulting in >96% mass removal for any of the compounds. In spite of these high removal percentages, laboratory column tests indicated that at these levels of chlorinated contaminants, surface saturation of the iron grains likely contributed to lower than expected reaction rates. In the biosparge zone, mass removal of cDCE appeared to occur predominantly by biodegradation (65%) with volatilization (35%) being an important secondary process. The dominant removal process for VC was volatilization (70%) although significant biodegradation was also indicated (30%). Laboratory microcosm results confirmed the potential for aerobic biodegradation of cDCE and VC. When average influent field concentrations for cDCE and VC were 220,000 and 46,000 μg/l, respectively, the sequential treatment unit removed 99.6% of the total mass and when the influent concentrations decreased to 26,000 and 19,000 μg/l for cDCE and VC, respectively, >99.9% removal within the treatment gate was attained. BTEX compounds were found to be significantly retarded in the iron treatment zone. Although they did eventually break through the granular iron, and into the gravel transition zone, none of these compounds was detected in the biosparge zone. No noticeable interferences between the anaerobic (reductive) and aerobic parts of the system occurred during testing. The results of this experiment show that in situ treatment sequences are viable, although further work is needed to optimize performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call