Abstract

Septic tanks are the second largest source of groundwater nitrate contamination. In this study, the feasibility of coupling a conventional lateral field with a sulfur‐limestone (S/L) layer to treat nitrate in septic tank effluent was investigated using column reactors to simulate the septic tank soil adsorption system. The effects of different hydraulic loading rates, nitrogen loading rates, depth of SIL layers, and ratio of SIL‐to‐gravel on reactor performance were investigated. The profiles of ammonium, nitrite, nitrate, sulfate, calcium, and other parameters along the depth of reactors were measured. Significant nitrification was observed in the sand layer, while significant denitrification was observed in the S/L layer. Sulfate and hardness were produced in accordance with stoichiometric relationships. The results demonstrate that the S/L method is very effective in denitrification, while production of sulfate and hardness and existence of sulfide in effluent may be limiting factors in its application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.