Abstract

A combination of in-situ scanning electron microscopy (SEM) and geometric phase analysis (GPA) was used to study the deformation fields around a crack-tip in single-crystal silicon under uniaxial tensile load. The sub-microscale silicon pillars grating was fabricated using holographic lithography followed by inductively coupled plasma etching. A series of SEM images of dynamic crack with the sub-microscale grating were obtained during tensile testing. The strain fields around the crack-tip were mapped by GPA. The strain fields were compared with the linear elastic fracture mechanics solutions. It was determined that the deformation is performed around the crack-tip area. The normal strain εxx and shear strain εxy are nearly zero, and the strain fields are dominated by the normal strain εyy component. With the increase of displacement load, the crack propagated mainly along the [010] crystal direction and the strains around the crack-tip increased gradually. It is noted that the theoretical prediction is lower than the experimental results from 0 to 2μm ahead of the crack-tip. However, the agreement between experimental results and theoretical prediction is very good far from the crack-tip (>2μm).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.