Abstract
Nanomaterials without chemical linkers or physical interactions that reside on a two-dimensional surface are attractive because of their electronic, optical and catalytic properties. An in situ method has been developed to fabricate gold nanoparticle (Au NP) films on different substrates, regardless of whether they are hydrophilic or hydrophobic surfaces, including glass, 96-well polystyrene plates, and polydimethylsiloxane (PDMS). A mixture of sodium formate (HCOONa) and chloroauric acid (HAuCl4) solution was used to prepare Au NP films at room temperature. An experimental study of the mechanism revealed that film formation is dependent on surface wettability and inter particle attraction. The as-fabricated Au NP films were further applied to the colorimetric detection of influenza virus. The response to the commercial target, New Caledonia/H1N1/1999 influenza virus, was linear in the range from 10 pg/ml to 10 μg/ml and limit of detection was 50.5 pg/ml. In the presence of clinically isolated influenza A virus (H3N2), the optical density of developed color was dependent on the virus concentration (10–50,000 PFU/ml). The limit of detection of this study was 24.3 PFU/ml, a limit 116 times lower than that of conventional ELISA (2824.3 PFU/ml). The sensitivity was also 500 times greater than that of commercial immunochromatography kits.
Highlights
Nanomaterials without chemical linkers or physical interactions that reside on a two-dimensional surface are attractive because of their electronic, optical and catalytic properties
We limited our fabrication to a centimeter length area; the procedure is readily scalable
The Au NP films were further applied to the development of a sensitive assay that can detect influenza virus A (H1N1) and A (H3N2) at concentrations of 10 pg/ml and 10 plaque forming units (PFU)/ ml respectively
Summary
Nanomaterials without chemical linkers or physical interactions that reside on a two-dimensional surface are attractive because of their electronic, optical and catalytic properties. Gold nanoparticles (Au NPs) are one of the most promising materials because of their unprecedented ability to confine electromagnetic fields and potential applications in a vast array of photonic and optoelectronic technologies ranging from chemical sensing and biosensing applications to energy harvesting[4,20,21], imaging[22], data storage[23], and optical tweezer devices[24] for nanomaterial manipulation Because of these possible applications of Au NP films, many conventional and Nano technological methods have been proposed for film fabrication, including electron-beam lithography and nanoimprint lithography as top-down techniques[25,26]. The need to develop facile in situ self-assembling Au NP films on a large scale is another urgent challenge to reduce the time and labor involved and the amount of waste generated, as well as to push plasmonic films toward practical applications
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.