Abstract
Mixed-dimensional perovskite (MDP) heterostructures are promising optoelectronic semiconductors. Yet, the current preparation methods involve complex experimental procedures and material compatibility constraints, limiting their widespread applications. Here, we present a one-step room temperature solution-based approach to synthesize a range of 1D C4N2H14PbBr4 and 3D APbBr3 (A = Cs+, MA+, FA+) self-assembled MDP heterostructures exhibiting high-efficiency white light-emitting properties. The ultra-broadband emission results from the synergy between the self-captured blue broadband emission from 1D perovskites and the green emission of 3D perovskites, covering the entire visible-light spectrum with a full width at half-maximum exceeding 170 nm and a remarkable photoluminescence quantum yield of 26%. This work establishes a novel prototype for the preparation of highly luminescent MDP heterostructures, offering insights for future research and industrialization in the realm of white light LEDs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.