Abstract

We investigated in situ the interaction between a single gold nanorod and monolayer transition metal dichalcogenides (TMDCs) by atomic force microscopy nanomanipulation and single-particle spectroscopy. We observed that the resonant scattering peak of the hybrid redshifted, the full width at half maximum of the scattering resonance narrowed and the scattering intensity increased compared with those of the same nanorod before coupling with monolayer TMDCs. These results were understood with the aid of finite-difference time-domain simulations, the Fano model, and the classical oscillator model. Also, the spectral features varied with the distance between the nanorod and TMDCs, and the interaction was mainly attributed to the resonant energy transfer effect. Our findings clarify the influence of TMDCs on the plasmonic resonance and contribute to a deeper understanding of the plasmon exciton interaction. These results are beneficial for the optimization of plasmonic nanostructure-TMDC hybrids and their corresponding applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call