Abstract

An experimental in situ microcosm study was conducted in the tropical lagoon La Mancha (Gulf of Mexico) to determine whether or not nutrient limitation occurs and to examine the direct effect of an inorganic nutrient pulse on the phytoplankton community structure. The phytoplankton community response to the addition of four treatments with different combinations of nitrogen (N), phosphorus (P), and silica (Si) (+N-NH4 +, +P-PO4 −, +Si-SO3, and N:P16) showed that phytoplankton was N-limited as indicated by an increase in phytoplankton biomass (i.e., chlorophyll a) (range, 8–34 mg m−3) during the dry season in two consecutive years (2006 and 2007). Picophytoplankton abundance significantly increased in the +N treatment (145.46 103 cells L−1), while microphytoplankton reached a maximum abundance (68.38 103 cells L−1) in the N:P16 treatment. Phytoplankton composition changed from a community initially dominated by dinoflagellates (e.g., Prorocentrum spp.) to another dominated by diatoms (Thalassiosira and Nitzschia longissima) in the N:P16 treatment. The +N treatment significantly increased Synechococcus sp. growth rates (1.3 divisions per day) (picocyanobacteria). Biomarker pigments measured in the experimental microcosms confirmed observed changes in phytoplankton groups. Our results reveal that La Mancha lagoon is a N-limited coastal system during the dry season and provides evidence of the temporal species successional patterns and mechanisms regulating the phytoplankton community response to nutrient enrichment pulses in this already eutrophic coastal lagoon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.