Abstract

AbstractThere has been a great deal of focus on methyl tertiary butyl ether (MTBE) over the past few years by local, state, and federal government, industry, public stakeholders, the environmental services market, and educational institutions. This focus is, in large part, the result of the widespread detection of MTBE in groundwater and surface waters across the United States. The presence of MTBE in groundwater has been attributed primarily to the release from underground storage tank (UST) systems at gasoline service stations. MTBE's physical and chemical properties are different than other constituents of gasoline that have traditionally been cause for concern [benzene, toluene, ethylbenzene, and xylenes (BTEX)]. This difference in properties is why MTBE migrates differently in the subsurface environment and exhibits different constraints relative to mitigation and remediation of MTBE once it has been released to subsurface soils and groundwater.Resource Control Corporation (RCC) has accomplished the remediation of MTBE from subsurface soil and groundwater at multiple sites using ozone. RCC has successfully applied ozone at several sites with different lithologies, geochemistry, and concentrations of constituents of concern. This article presents results from several projects utilizing in situ chemical oxidation with ozone. On these projects MTBE concentrations in groundwater were reduced to remedial objectives usually sooner than anticipated. © 2002 Wiley Periodicals, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call