Abstract

The effectiveness of cosolvent soil flushing and fungal biosorption for the remediation of p,p′-DDT-contaminated soil was evaluated usingpacked soil columns in order to simulate an in situ soil flushing technique. Greater than 95% of p,p′-DDT (940 mg kg-1) was desorbed from the soil by flushing with 40 or 80% 1-propanol. Increasing the cosolvent volume fraction increased the rate of p,p′-DDT removal from the soil, however, the extent of p,p′-DDT removal was not enhanced. A further enhancement in therate of p,p′-DDT removal was achieved by increasing the cosolventflow rate from 6 ml hr-1 to 12 ml hr-1 (pore water velocity from 18.9 to 37.8 cm hr-1). The desorbed p,p′-DDT was removed from cosolvent wash solutions by partitioning onto fungal biomass. Biosorption of p,p′-DDT resulted in low concentrations of the organochlorine (3.3 μg ml-1) remaining in thecosolvent effluent indicating that the cosolvent could be reused for further p,p′-DDT desorption. Using this technique, between 53 and 95 pore volumes were required to reduce p,p′-DDT concentrationsfrom 990 mg kg-1 to below Australian and New Zealand Environmentaland Conservation Council (ANZECC) guidelines (50 mg kg-1).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.