Abstract

Fluorescence “turn on” method is always preferable for target detection under the urgent demand to develop point-of-care portable sensors in practical applications due to its higher selectivity and less false positives. However, there is only few reports of pesticide monitoring based on this strategy so far most probably ascribed to its poor hydrophilicity and reactivity. In this work, triggered by reductant tris (2-carboxyethyl) phosphine hydrochloride (TCEP), initially fluorescence-quenched gold nanoparticles (Au NPs)-decorated quantum dots (QDs)-embedded nanobead shows obvious fluorescence “turn on” signal response to thiram with concentration response range of 0.01–20 μM and limit of detection (LOD) of 7 nM due to the target-induced dissociation of Au NPs from the surface of probe nanobead. Moreover, paper sensor has been successfully developed by immersing commercial drainage membrane in probe solution for visual detection of thiram with the ultrahigh LOD (50 nM) by the naked eye. More importantly, this work, for the first time, reported an in situ reduction strategy to improve the interaction between target and nanoprobe and thus bring obvious signal output for pesticide detection with high sensitivity, demonstrating the potential to expand the detection scope of nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call