Abstract

AbstractPerovskite solar cells (PSCs) have demonstrated a high power conversion efficiency, however, the large energy loss due to non‐radiative recombination is the main challenge for further performance enhancement. Here, a surface treatment strategy is developed by heat‐induced decomposition of a thin interlayer 2,7‐Naphthaleneditriflate (NAP) to in situ reconstruct perovskite energetics. It is verified that the reconstructed perovskite surface energetics match better with the upper hole transport layer compared to the intrinsic condition. Spontaneous generation of n/n− homojunctions between the perovskite film bulk and the surface region promotes hole extraction, enhancing built‐in electric field, and thus significantly suppresses charge recombination at such perovskite hole‐selective heterojunctions. Moreover, the surface decomposed fluorine‐rich complexes passivate the defects and improve the crystallinity of the perovskite film. These advantages are confirmed by a remarkably improved efficiency from 20.52% for the control device to 23.37% for the treated one with excellent stability. The work provides a promising approach of in situ reconstructing perovskite surface and interface for the design of highly efficient and stable PSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call