Abstract

Direct mineral dating is critical for thorough understanding of the genesis of hydrothermal mineralizations, ore forming processes and events of fracturing and related fluid-rock interaction. Since minerals of suitable type and sample volume for conventional techniques can be rare, development of high-precision in situ Rb-Sr dating of common rock-forming minerals such as micas, feldspars and calcite offers possibilities to gain temporal constraints of a wide variety of geological features with detailed spatial and depth resolution. This technique separates 87Sr from 87Rb by introducing a reaction gas between two quadropoles in a LA-ICP-MS system. In this study, in situ Rb-Sr geochronology distinguishes the timing of several different fracture-controlled hydrothermal events: 1 and 2) greisen mineralizations and associated far-field hydrothermal veins adjacent to a granite intrusion, 3) reactivation events within a mylonite shear zone and 4) low-temperature precipitation from saline organic-rich brines in thin veinlets. We demonstrate that in situ Rb-Sr dating is feasible for a broad range of mineral assemblages, textures, temperatures and ages, emphasizing the impending use of this new method in ore deposit exploration and many other research fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.