Abstract

Properties of gas hydrate are commonly investigated in laboratory by simulators or studied using the hydrate samples recovered from permafrost and marine sediments. Here synthetic gas hydrate (SGH) is quickly formed for the first time by fluids and bubbles erupted from the active cold seeps at the Formosa Ridge in the South China Sea (SCS). SGH samples are in situ detected by a Raman insertion probe for gas hydrate (RiP-Gh) which is deployed by the remotely operated vehicle (ROV) Faxian. Both spatial and temporal in situ Raman spectra of the SGH samples are acquired in order to determine the structure and the evolution of the synthetic gas hydrate. Authigenic carbonate debris or other debris serving as nucleation particles, which is found in the in situ Raman spectra of SGH samples for the first time, may be one factor that can promote the formation of synthetic gas hydrate. The gas-water interface demonstrated by the observation results, also contributes to the quick formation of SGH samples, which agrees well with the previous study. In situ Raman spectra of three SGH samples which have been placed on the seafloor for 0 h, 4 h and 21 h respectively are acquired. Laboratory Raman spectra of one sample which has been surprisingly found and recovered after 9840 h (410 days) since formed on the seafloor are also acquired. The Raman spectra of the four SGH samples indicate that the methane large-to-small cage occupancy ratios of the hydrates vary from 1.01 to 1.39, and the ratios of methane large-to-gas of the hydrates increase from 0.53 to 1.55. Overall, our work suggests a new explanation for the quick formation of gas hydrate compared to that in laboratory simulation work, and reveals the evolution of synthetic gas hydrate after quick formation, which provides a new insight for the study of natural gas hydrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.