Abstract
Bulk V-P-O and model supported vanadia catalysts were investigated with in situ Raman spectroscopy during n-butane oxidation to maleic anhydride in order to determine the fundamental molecular structure-reactivity/selectivity insights that can be obtained from such experiments. The in situ Raman studies of the bulk V-P-O catalysts provided information about the bulk crystalline phases, the hemihydrate precursor and its transformation to vanadyl pyrophosphate. However, the Raman experiments could not provide any molecular structural information about the amorphous and surface phases also present in this bulk metal oxide catalyst because of the strong Raman scattering from the crystalline phases. In contrast, in situ Raman studies of the model supported vanadia catalysts, where the active phase is present as a two-dimensional surface metal oxide overlayer, provided new insights into this important hydrocarbon oxidation reaction. In addition, the surface properties of the supported vanadia catalysts could be molecularly engineered to probe the role of various functionalities upon the structure-reactivity/selectivity relationship of n-butane oxidation to maleic anhydride. These fundamental studies revealed that the oxidation of n-butane required only one surface vanadia site and that the critical rate determining step involved the bridging VOP or VO-support bonds. The selective oxidation of n-butane to maleic anhydride could occur over one surface vanadia site as well as multiple adjacent surface vanadia sites, but the reaction is more efficient with multiple sites. The n-butane oxidation TOF increased with the introduction of both surface Brönsted and Lewis acid sites, but only the surface Lewis acid sites increased the maleic anhydride selectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.