Abstract

Natural materials consisting of protein structures impregnated with a tiny amount of metals often exhibit impressive mechanical behavior, which represents a new design paradigm for the development of biomimetic materials. Here, we produced Al-infiltrated silks by applying a modified Al2O3 atomic layer deposition process to the dragline silk of the Nephila pilipes spider, which showed unusual mechanical properties. The deformation behavior of the molecular structure of the Al-infiltrated silk was investigated by performing in situ Raman spectroscopy, where Raman shifts were measured concurrently with macroscopic mechanical deformations. For identifying the role of the infiltrated Al atoms, the study was performed in parallel with untreated silk, and the results were compared. Our experimental results revealed that superior mechanical properties of the Al-infiltrated silk are likely to be caused by the alterations of the sizes of the β-sheet crystals and their distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.