Abstract
The spillover of hydrogen species and its role in tuning the activity and selectivity in catalytic hydrogenation have been investigated in situ using surface-enhanced Raman spectroscopy (SERS) with 10 nm spatial resolution through the precise fabrication of Au/TiO2 /Pt sandwich nanostructures. In situ SERS study reveals that hydrogen species can efficiently spillover at Pt-TiO2 -Au interfaces, and the ultimate spillover distance on TiO2 is about 50 nm. Combining kinetic isotope experiments and density functional theory calculations, it is found that the hydrogen spillover proceeds via the water-assisted cleavage and formation of surface hydrogen-oxygen bond. More importantly, the selectivity in the hydrogenation of the nitro or isocyanide group is manipulated by controlling the hydrogen spillover. This work provides molecular insights to deepen the understanding of hydrogen activation and boosts the design of active and selective catalysts for hydrogenation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.