Abstract

Soil water status and fine-root characteristics are the foundation for implementing forest water-management strategies in semiarid forest plantations, where rainwater is always the sole source of water for plant growth. Rainwater management and utilization are effective strategies to alleviate water scarcity in semiarid areas as ground water is always inaccessible there. Through the implementation of an in situ rainwater collection and infiltration system (IRCIS), we investigated the effects of IRCIS on soil water and fine-root distributions in the 0–5 m soil profile in a wet (2015, 815 mm) and a dry year (2016, 468 mm) in rainfed Robinia pseudoacacia forests in the Loess Plateau region of China. The results showed drought significantly decreased plant water availability and hydraulic conductivity of roots and branches, but strongly increased soil moisture deficits and fine-root (<2 mm diameter) biomass. With the implementation of IRCIS, soil profile available water and plant hydraulic conductivity can be significantly increased, but soil moisture deficits and fine-root (<2 mm diameter) biomass can be significantly decreased. Drought also significantly influenced the root distribution of Robinia pseudoacacia. The maximum depth of Robinia pseudoacacia roots in the dry year was significantly greater than in the wet year. Therefore, Robinia pseudoacacia can absorb shallow (0–1.5 m) soil water in wet years, while utilizing deep (>1.5 m) soil water in dry years to maintain normal growth and resist drought stress. The results of this study will contribute to the formulation of appropriate strategies for planning and managing rainwater resources in forest plantations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.