Abstract

Sulfamethoxazole (SMX), a widely used antibiotic, poses significant environmental and health risks due to its persistence and mobility in water systems, potentially leading to antibiotic resistance and ecological harm. Herein, we developed an electrochemical sensor based on Bismuth Ferrite (BiFeO3)/Halloysite Nanotube (BFO/HNT) composite for sensitive and selective SMX detection. The BFO/HNT composite was synthesized via a hydrothermal method and comprehensively characterized using EDS mapping, HRTEM, XRD, FT-IR, and XPS analysis. The BFO/HNT composite enhances the sensor’s performance due to its unique properties, such as increased electrochemical surface area (ECSA) and efficient electron transfer capability. The B-cation (Fe) in the BiFeO3 matrix plays a crucial role in boosting the electrochemical response by facilitating redox reactions. In addition, the HNTs provide a high surface area and excellent adsorption capabilities, which improve the sensor’s sensitivity by facilitating better interaction with SMX molecules. As the results, the prepared sensor demonstrates an impressive linear detection range of 0.01 to 2 µM and 22 to 122 µM, with a detection limit as low as 0.017 µM. Practical applications were validated by detecting SMX in tap water and artificial saliva, achieving high recovery rates of 98.87 % and 99.11 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.