Abstract

Biocatalysis constitutes an effective tool for the production of fine chemicals. In order to widen the spectrum of applicable reaction types to reactions that are constrained by inhibitions, product toxicity, or degradation, an unfavorable position of the thermodynamic equilibrium, or by kinetic control, in situ product removal (ISPR) is an attractive process option to overcome those limitations. To fully exploit the benefits of the ISPR approach, selective removal of the product to an auxiliary phase with high capacity is usually required. Obviously, such an operation becomes increasingly difficult with decreasing differences in the physical properties of substrate(s) and product(s) as it is arguably frequently the case with biotransformations. In this paper we analyze the possibilities to apply ISPR to biotransformations and identify the most promising developments supported by simple model considerations to fully exploit the potential of ISPR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.