Abstract
Product inhibition is often the cause limiting the maximum product concentration attainable in fermentation. This study showed the product yield of p-cresol could be improved by in-situ product recovery (ISPR). Escherichia coli transformed with the hpd BCA operon from Clostridium difficile was shown in this study to express phydroxyphenylacetate decarboxylase which converted p-hydroxyphenylacetate into p-cresol under anaerobic fermentation. Toxicity of p-cresol found at a concentration as low as 5 mM in a broth spiked with p-cresol was shown to have limited the maximum product concentration at 1 ± 0.1 mM after 30 hours of batch fermentation. Product yield was however shown to increase by 51% when activated carbon was used to remove p-cresol in-situ production. The activated carbon concentrated p-cresol on the solid adsorbent which was subsequently separated by sedimentation and p-cresol recovered by ultrasonic-assisted solvent extraction. Desorption of p-cresol from the spent activated carbon allowed the adsorbent to be regenerated for further product recovery. The ISPR strategy reported here was shown to improve the yield of a toxic product, was sustainable, and when adapted to a continuous process would increase productivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Open Biotechnology Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.