Abstract

Abstract Through in situ Cu 3+ ion irradiation at room temperature in a transmission electron microscope (TEM), we have investigated the evolution of defect clusters as a function of the radiation dose at different distances from the 3 {1 1 2} incoherent twin boundary (ITB) in Cu. Post in situ ion irradiation, high resolution TEM was used to explore the types of defects, which are composed of a high-density of vacancy stacking fault tetrahedra (SFT) and sparsely distributed interstitial Frank loops. During irradiation, defect clusters evolve through four stages: (i) incubation, (ii) non-interaction, (iii) interaction and (iv) saturation; and the corresponding density was observed to initially increase with irradiation dose and then approach saturation. No obvious denuded zone is observed along the 3 {1 1 2} ITB and the configuration of defects at the boundary displays as truncated SFTs. Several defect evolution models have been proposed to explain the observed phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.