Abstract

Silicon nitride–silicon carbide nanocomposite has been prepared by an in situ method that utilizes the formation of SiC nanograins by carbothermal reduction of intentionally added fine SiO2 during the sintering process. The mean value of room‐temperature four‐point bending strength is 675 MPa with the Weibull modulus of 6.4 and an indentation fracture toughness of 7.4 MPa·m1/2. A significantly enhanced creep resistance was achieved by the incorporation of SiC nanoparticles into the matrix up to 1400°C. The tribological properties of the material were tested using a ball‐on‐disk configuration and showed a friction coefficient of about 0.7. The cutting inserts machined from this composite had three times longer lifetime compared with those available on the market. On the other hand, the scatter of results is much larger compared with those measured for the commercial inserts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.