Abstract

Efficient and low-cost electrocatalysts for the hydrogen evolution reaction (HER) are required for producing hydrogen energy through water splitting. Carbon materials as HER catalyst supports are explored widely since the strong metal-support interactions are generally believed to be active and stable toward HER. Herein, we report N-doped porous carbon materials as novel substrates to stabilize the cluster metal sites through the Ru(III) polyamine complexes, which play an important role not only in efficient electron transfer but also in the increasing utilization of metallic active sites. Meanwhile, due to the strong metal-support interactions driven by Ru(III) polyamine complexes, the obtained Ru cluster with a mass loading of 3% on N-doped porous carbon nanoplates (Ru cluster@NCs) exhibits robust stability for HER at a constant voltage, proving to be a promising candidate catalyst for HER. Density functional theory calculations further indicate that the Gibbs free energy (ΔG) of adsorbed H* of Ru cluster@NCs is much closer to zero compared to Ru@(10%)NCs and Pt/C(20%), thus Ru cluster@NCs facilitate the HER process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call