Abstract

The strategy of material modification for improving the stability of silicon electrodes is laborious and costly, while the conventional binders cannot withstand the repeated massive volume variability of silicon-based materials. Hence, there is a demand to settle the silicon-based materials' problems with green and straightforward solutions. This paper presents a high-performance silicon anode with a binder obtained by in situ thermal cross-linking of citric acid (CA) and β-cyclodextrin (β-CD) during the electrode preparation process. The Si electrode with a binder synthesized by the one-pot method shows excellent cycling performance. It maintains a specific capacity of 1696 mAh·g-1 after 200 cycles at a high current of 0.5 C. Furthermore, the carbonylation of β-CD to carbonyl-β-CD (c-β-CD) introduced better water solubility, and the c-β-CD can generate multidimensional connections with CA and Si, which significantly enhances the specific capacity to 1941 mAh·g-1 at 0.5 C. The results demonstrate that the prepared integrated electrode facilitates the formation of a stable and controllable solid electrolyte interface layer of Si and accommodates Si's repeated giant volume variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call